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Linear rate equations are used to describe the cascading decay of, e.g., a jet into partons or an initial heavy
nucleus into fragments. This representation is based upon a triangular matrix of transition rates. We expand the
state vector of mass multiplicities, which describes the process into the biorthonormal basis of eigenmodes
provided by the triangular matrix. We obtain analytic solutions of discrete models with explicit mathematical
properties for the eigenmodes. A suitable continuous limit, valid for large systems, provides a solution inter-
polating between the solvable discrete cases. It gives a general relationship between the decay products and the

elementary transition rates.

PACS number(s): 64.60.—1i, 13.87.Fh, 25.70.Pq

For the analysis of fragmentation and decay processes it is
possible to consider binary [1] elementary processes where a
suitable observable (mass number, energy momentum, etc.)
with value k breaks into parts with values j and k—j,
j=12,...,k—1, with a probability w jk per unit of time. For
simplicity, we assume that w, is time dependent. Also, for
clarity, we speak of “mass” and “fragments” in the follow-
ing. Note that the formalism may as well consider discrete
or, at the limit of large ‘“masses,” continuous degrees of
freedom.

By definition, w;,=0 if j=k and wj; is symmetric if j is
replaced by k— j, naturally. (For technical reasons, the coef-
ficient w; »; is twice the actual transition rate.) Let N;(f) be
the multiplicity of fragment j at time ¢ in a process initiated
from the decay of a cluster A, namely N;(0)=6;4. The
model under study is described by the following set of linear,
first order differential equations,
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With components N;, j=1,...,A, for a column vector
|.#), the system, Egs. (1), boils down to d|4")/dt
=9 |.#") with a triangular matrix %7". The solution of Egs.
(1) is obviously |4y = exp(—tZ)|.# ), a sum of exponen-
tials whose rates of decay in time are the trivial eigenvalues
of the triangular 77, namely the diagonal matrix elements
—c) . The purpose of this paper is to take advantage of the
expansion of the evolution on the biorthonormal basis of
eigenmodes of 7,

A A
L#y= 2 INexp(=te)(Rr )= X INexp(=en)Yy,
@

where Y} is the last component of the bra eigenvector (X|
We are specially interested in the analytical structure of the
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bra eigenvectors ()-\|, because of the synthetic information
carried by scalar products My =(X\|.%).

In our previous investigations [1] we found numerical evi-
dence for specific exponents g(\) which govern a powerlike
increase of the components of the bra eigenvectors, Y}‘
o« j9M), In other words, M, is similar to a moment of order
g(\) of the mass distribution, M=%, jIMN ;- We took ad-
vantage of the fact that % has a fixed bra eigenvector (1|,
whose components Y}= j, j=1,...,A, express mass con-
servation. Indeed the total mass is M, =(i|/l/)=2’;= 1JN;,
with dM/dt=(1|%|.#)=0, since the first eigenvalue
—c identically vanishes. It was also convenient to define
the “mass weighted multiplicity” (MWM) vector U with
components U;=iN;, whose evolution is governed by a ma-
trix ¢, with matrix elements %7,=j% /k, hence
dU/dt=ZTU. A numerical analysis of U revealed scaling
properties of the fragmentation process. The present paper
attempts to give analytical proofs where only numerical evi-
dence was previously found. In particular we are interested
in those mathematical properties of the bra ()'\I eigenvectors
which may enlighten the comprehension of the expansion,
Eq. (2).

Our main tools in this analysis are the following equations
for the components Y? of the bra eigenvectors of

j—2

Ex YIw,+Yh wi_y=(c;—c)Y}, j=N. ()
=

Similar equations govern the components X Z‘ of the ket

eigenvectors, naturally. We keep in mind that Y;‘=0 if

j<\ and X}=0 if i>\. A suitable (biortho)normalization

results from the following boundary conditions:

Yi=X)=1. 4)
Note that the components of the biorthonormal eigenvectors
of the matrix 2 which governs the MWM are easily de-
duced, as ' =\Y}/j and .2 =iX}/\.
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It happens frequently that c; is a monotonically increasing
function of j. The physical interpretation is that the heavier
the system, the larger its total decay rate. Under such a con-
dition, the coefficients c;—c, on the right-hand side of Egs.
(3) are always positive when j>\. The left-hand sides of the
same equation, Egs. (3), depends only on the positive coef-
ficients w;; and components Y} of rank i lower than j,
A<i<j—1. It is easy to calculate Y}, , from Y} alone,
which was chosen to be positive from the normalization
Y)=1. Thus Y}, is positive. A trivial recursive argument
then shows that all nonvanishing components Y}‘ are posi-
tive. As a consequence of the positivity of the bras and of
biorthogonality, the ket eigenvectors must show highly oscil-
latory components. This demands a further, specific study.

In the same way as in our earlier [1] studies we first select
values of w;; which express scaling properties at vertices of
binary fragmentation. For this, the family of models we con-
sider [2] uses the form w;;=[f(i/j)+ f(1—i/j)]j ¢, and is
parametrized by a ““splitting” function f and an overall ex-
ponent a. For most of the present analytical study, we restrict
a to the value a=1, because it allows a convenient continu-
ous limit, valid for finite values of A and large sizes A of the
matrix. The value a=1, for instance, is the proper exponent
for quantum chromodynamics fragmentation [3,4] when we
consider energy-momentum fragmentation rather than mass
fragmentation.

A simplified, albeit generic form of f is parameterized by
a second exponent, b, in the form

Al

The variable x=i/j (with its mandatory symmetry comple-
ment 1 —x) is obviously the scaling mass ratio at the frag-
mentation vertex. We note that the cases a=1, =0 and
a=1, b=—1 generate the same eigenvectors, since the cor-

responding matrices are strictly proportional, namely
wij|b=0=2Wij|b=—1=2/j~
For a=1, b=—1, the simple nature of w;;, namely

w;;=1/j, reduces Egs. (3) into

A

j—1 Yi ,
(Cj._l_C)\)Y;\_l""—J]._‘=(Cj_C)\)Y;\. (3)

J

Hence a recursion relation for the bra eigenvector compo-
nents is found,

Y i+a—1 .
Yo, ix ©

and accordingly the bra eigenvector components are given
by the formula,

Gi+N—1)!
Y=o @)

For large values of j, the recursion relation expands in pow-
ers of 1/j, when j is large, according to
A
Yi -

1+2}‘
Y

1
+0(1/j%), ®)
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which means that Y}«i?*~1, This proves analytically that
the scalar products (A|.#)=3%_, YN, of the bra eigenvec-
tors with ./ express moments, of order g(A)=2\—1, of the
multiplicity distributions, restricted to fragments at least as
heavy as M. This justifies analytically, for a=1 and
b= —1,0, the numerical evidence obtained in our previous
paper [1].

For a=1, b=1 the rates become w;;=j/[i(j—i)]. The
matrix 7" is simpler than %, since then 7/;;=1/(j —i) in the
upper-right triangle, which does not vanish. The diagonal is
unchanged, and so is, naturally, the lower-left vanishing tri-
angle. A straightforivard but slightly tedious argument shows
that

(-1!
N
=M= oot D ©)
One deduces from Eq. (9) that
Y (j+1) A
]+l: J - i .2
Y~ - G+I=N) 1+ ; +0(1/j%). (10)

J

Hence, now, g(A)=X\. This makes a second case where the
power law Y;‘°< j9™ can be proved analytically.

If a is frozen to the value a=1, it is tempting to interpo-
late between the behavior g(A)=2A—1 found for b=—1
and that one, g(A)=N\, valid for b=1. Because of the iden-
tity of eigenvectors for the b=—1 and b=0 cases, a para-
bolic interpolation

N17—4b'%)+4b'2—9
8 b

Gin(N) = b'=b+3; (11)
is found.

This interpolation turns out to be consistent with the con-
tinuous limit condition considered earlier, see Eq. (9) in Ref.

(1],

)\b——l)‘_1
=52 [T+ 0=0)7"]
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—lfld 1-x7—(1—x)][x P+ (1—x)"°
=37, @12 =A-0)x"+ (1-x)7"]

- joldx[l —x7=(1-x)7]x "%, (12)

where we take advantage of the symmetry w;;j=w;_; ;. We
can use this continuous limit, Eq. (12), to estimate g as a
function of A when ¢, is known, whether analytically or
numerically. The identity of the cases b=0 and b= —1 for
Eq. (12) is transparent. Also, for any value of b, the pair
A=1, g=1 solves obviously Eq. (12). Then, for 5=0 one
gets at once from Eq. (12) the condition (A—1)/\
=1-—2/(q+1), hence g(A)=2\—1, in agreement with Eq.
(8). Furthermore for =1, with the ansatz g(\) =N\, the re-
cursive relation, derived from Eq. (12),
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FIG. 1. Behavior of the “eigenexponents” g(\) for the 2nd, 5th,
and 8th bra eigenvectors, as functions of the parameter b (model
with scaling properties for fragmentation vertices). Full lines: con-
tinuous limit predictions; dotted lines: quadratic interpolations be-
tween the exact values, known analytically for b= —1,0,1.

1 1 x)\+(1_x))\_x)\+l_(1_x))\+l
Cx+1- N TYT T >

X

is easy to verify.

We show in Fig. 1 the plots (full lines) of the values of
q(2), g(5), and q(8), respectively, obtained numerically
from Eq. (12) for —1.5<b=<1.5. The same Fig. 1 shows
(dotted lines) the corresponding interpolation predictions
gini(\) from Eq. (11). As long as —1.2<b=<1.2, the continu-
ous limit results and the parabolic interpolations do not differ
by more than 4%. Significant deviations between such esti-
mates occur, however, when 1.2<|b|. It may be pointed out
that the continuous limit estimates are expected to be more
rigorous. Finally, in Fig. 2, we show for, e.g., b=—0.5,
b=0.5, and b=1.5, that, when provided by Eq. (12), the
behavior of g as a function of N remains essentially linear.
Namely, a parametrization g(\)=a(b)\+ B(b) is reason-
able, despite the fact that «(b) and B(b) are more compli-
cated than the quadratic forms present in Eq. (11).

In conclusion, there is firm ground for the validity of the
power law which governs the bra eigenvector components
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FIG. 2. Strongly linear behavior of g(\) as a function of \, for
different values of b. Full lines are drawn to guide the eye between
integer values of \.

and the corresponding interpretation in terms of moments of
the multiplicity vector .#". The apparent simplicity of the
relation g(N\)=a(b)\ + B(b), see for instance, Eq. (11), ex-
presses a nontrivial relationship between very different quan-
tities, namely, experimentally observable moments on one
hand and, on the other hand, much less observable param-
eters b of the microscopic mechanism of binary fragmenta-
tion. This suggests the following criterion for deducing b
from experimental multiplicity spectra: given one such spec-
trum, which is assumed to be parametrized by a freeze-out
time ¢, any ratio In[M,,(¢)/M,.(0)]/In [M\(t)/M\(0)] of
logarithms of moments is independent of ¢ if the correspond-
ing q(N\),g(\") are those of the eigenvectors driving the
physical phenomenon. Hence, different event spectra, corre-
sponding to different freeze-out times, should generate the
same ratio. Once a systematic set of such exponents g(\)
have been identified, they give a strong hint of a binary mul-
tifragmentation mechanism and an estimate of b.
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